首页 > 技术 > Siemens > > 柴油机辐射噪声预测及控制技术研究

柴油机辐射噪声预测及控制技术研究

作者:Simwe    来源:LMS    发布时间:2012-11-02    收藏】 【打印】  复制连接  【 】 我来说两句:(0逛逛论坛

摘要:利用有限元法和边界元法预测CY4102BG型柴油机在高负荷工况下的振动及辐射噪声特性,确定出柴油机的高噪声区域,并针对噪声预测结果提出改进设计方案。分析了采用阻尼技术对噪声较高的油底壳部件辐射噪声的影响以及在机体和油底壳之间安装加强板结构对柴油机结构噪声的影响。研究表明,采用这两种措施对于降低柴油机辐射噪声具有良好的效果。
关键词:声学;柴油机;辐射噪声;噪声预测;噪声控制;高负荷

柴油机噪声控制技术的实践表明:由于受到制造工艺、生产成本等方面的限制,改善现有柴油机振动噪声特性的可能性是有限的,所采用降低辐射噪声的措施也是被动的。另外从根源上减小燃烧过程的压力升高率是降低柴油机噪声最根本的措施,但该措施的实施在很大程度上会影响其动力性、燃油经济性、排放等性能指标。在不影响其它性能前提下,通过改进主要噪声辐射源的结构设计,不失为一种有效措施。这就需要对结构噪声进行预测和优化。

采用数值方法预测柴油机结构辐射噪声,只根据柴油机设计图纸就可以进行噪声特性计算,求出辐射噪声分布图,进而对高噪声区域进行结构改进,以低噪声作为目标函数进行多方案优化设计。这样可大大缩短开发周期,节约成本。本文使用有限元法(ANSYS)和边界元法( SYSNO ISE)计算软件对柴油机结构辐射噪声进行数值预测,进而进行结构改进设计并验证其降噪效果。

1 柴油机组合结构有限元模型的建立

根据CY4102BG柴油机的装配情况,首先建立缸盖、机体、缸套、主轴承盖和油底壳的组合结构有限元模型。其中对安装附件用的大部分凸台及尺寸不大的螺纹孔、水孔、油孔都不予考虑。油底壳结构采用壳单元Shell63,其它结构采用实体单元Solid45来建立。其有限元模型如图1所示。

newmaker.com
图1 柴油机组合结构有限元模型

2 柴油机瞬态响应分析

2. 1 柴油机载荷工况计算

柴油机载荷的确定,对于振动响应分析是个关键。柴油机受力很复杂,为使理论计算可行,有必要对其受力进行简化处理。本文在力求能够反映实际的状况下,考虑柴油机稳态工作状况,以气缸燃气压力对缸套和缸盖的作用力、活塞连杆机构的运动惯性力和曲轴旋转惯性力引起的主轴承力等主要因素,确定柴油机所受的激励力。

2. 1. 1 气缸燃烧压力计算

利用GT2POWER软件模拟出气缸平均有效压力速度特性曲线,如图2所示。从图中可以看出最高平均有效压力工况出现在转速为1500 r /min。当发动机转速在1500 r /min时,此时气体爆发压力峰值为7. 5MPa,图3是1500 r /min高负荷工况下各缸压力曲线。考虑到CY4102BG型柴油机是四冲程柴油机,转速为1500 r /min时,完成一个工作循环的时间T = 0. 08 s,作用于柴油机上的载荷力近似为0.08 s内的周期力,在振动响应计算时,可只考虑一个周期时间作为振动响应历程的计算时间[ 1 ] 。

newmaker.com
图2 平均有效压力速度特性曲线

newmaker.com
图3 高负荷工况下各气缸压力曲线

2. 1. 2 主轴承载荷计算

主轴承负荷来自于气缸内气体作用力,活塞组往复惯性力和曲轴旋转惯性力引起的主轴承座上的载荷。作用在主轴承上的载荷比较复杂,其总径向力的大小和作用线方向随着曲柄转角的变化而变化。因此为施加力方便,把主轴承上的力P ( t)沿水平和垂直方向分解可得[ 2 ]

newmaker.com

其中, R 为曲柄半径, pg ( t)为气缸内燃烧气体的压力, D为气缸直径, mj 为沿气缸体中心线做往复运动的质量,包括活塞组件的质量以及连杆小端的代替质量, a ( t)为活塞往复运动的加速度,λ为曲柄半径R 与连杆长度L 之比。用到的计算参数:曲柄长度R为59mm,连杆长度L 为192mm,气缸直径D为102mm,活塞组的质量为1. 96kg,连杆组质量为2.24kg,点火顺序为1 - 3 - 4 - 2。

2. 2 载荷的施加

2. 2. 1 气缸燃烧压力的施加

气缸压力载荷分别作用在缸盖底面和活塞顶面上。气缸压力加载在缸盖底面上时采用各缸一个周期的缸内压力函数。由于气缸压力作用在气缸壁上的载荷,随着时间的变化,压力的大小和作用面积都发生变化,因此这里采用瞬时均布加载的方法,根据活塞的行程选择压力作用面积,以活塞上止点为坐标原点,沿气缸中心线向下为X轴正向,则活塞在时刻t所处的位置为

newmaker.com

在瞬态分析计算中,步长的选择是很重要的,既要准确地描述压力曲线的变化,又要考虑到计算的规模和时间,由于采用的是隐式积分算法,可以采用较大的步长[ 3 ] 。同时燃烧噪声和缸内压力升高率密切相关,考虑到压力升高率对燃烧噪声的影响,步长在气缸上止点前40度到上止点后15度采用1度曲轴转角,而在其他时间段采用20度曲轴转角。因此,靠近上止点位置网格划分较密,将每一步时间步长的压力加载到气缸壁表面节点上。

2. 2. 2 主轴承载荷的施加

由于在不同时刻t主轴承负荷P ( t)的大小、作用点和方向都发生变化,因此主轴承周向载荷也随时间而变化。而柴油机主轴承在P ( t)的作用下,形成主轴承油膜压力,其计算要综合旋转效应和挤压效应两方面的因素。并涉及到轴心轨迹的计算问题,因此情况非常复杂,需要一些简化。在简化计算时,假设轴承与轴颈之间的油膜压力周向分布按余弦规律变化,其分布角取2θ[4 ] ,在计算中取θ=π/3。且对称于Px( t)和Py ( t)作用线。由于各缸发火时刻不同,因此每个主轴承受到两侧气缸产生的合力。

2. 3 边界条件的确定

柴油机的机体与缸盖是靠螺栓紧固在一起的,本文采用螺栓和螺栓附近部位两个部件的对应的节点所有方向的位移全部耦合在一起,其它部位仅仅上下方向(UZ)耦合。发动机的油底壳是靠16颗螺栓连接在机体下部的,其前部和后部分别与齿轮室下部和飞轮壳下部相连接。由于考虑到连接的螺栓较多,并且结合面之间存在衬垫,压紧后实现密封,因此本文采用将油底壳与机体之间的连接界面简化为整个结合界面上对应节点在三个方向上位移全部耦合,主轴承盖与机体之间采用螺栓接触面的刚性耦合连接,缸套与机体采用整体刚性耦合连接。按照柴油机实际的安装结构,分别对机体两侧安装部位进行了约束处理,还对机体靠近输出端一侧端面下部进行了完全位移约束。

本文采用直接积分法求解柴油机瞬态振动响应通过计算得出了CY4102BG型柴油机在一个工作循环下的组合结构随时间变化的振动情况。

3柴油机结构噪声预测

在用有限元法对柴油机组合结构进行瞬态响应分析,得到组件的表面节点随时间变化的振动位移之后,通过利用APDL编写的有限元谱分析程序,将其转化成柴油机组合结构表面节点随频率变化的振动位移数据。下面就可以用边界元方法来预测辐射噪声。

3. 1边界元模型的建立

用边界元法预测辐射噪声,首先要建立组合结构的边界元模型,包括边界单元和边界节点。该边界元模型网格的尺寸比较规范,大小比较接近,这样有利于提高边界元法的计算速度和精度。由于建立的边界元模型不是直接从有限元模型提取的结构外表面有限元单元数据,因此需利用插值方法从有限元分析得到的节点振动位移计算出边界元模型节点的振动位移作为边界元模型的边界条件。

3. 2结构辐射噪声计算结果分析

3. 2. 1柴油机的声谱分析

对于柴油机组合结构来讲,考虑到以下几个方面:缸盖和机体在频率为300 - 2000Hz的中频段时,结构振动的响应最大,而且也是人耳感觉最强烈的噪声频率范围;油底壳的噪声在频率为50 - 1000Hz的低频段时起主要作用;该直列四缸柴油机在转速为1500r/min工况下工作,其发火频率为50Hz,因此本文的噪声分析频率取50 - 2000Hz,频率步长为50Hz。由于需要求解柴油机振动表面向外界的辐射噪声,因此本文采用直接边界元法进行辐射噪声计算。

 
分享到: 收藏