首页 > 技术 > ANSYS > > 大功率内燃机机车车体结构改进及减重计算分析

大功率内燃机机车车体结构改进及减重计算分析

作者:Simwe    来源:佳工机电网    发布时间:2012-11-20    收藏】 【打印】  复制连接  【 】 我来说两句:(0逛逛论坛

1 概述

为适应我国铁路货运提速重载要求,拟研制装用大功率内燃机的重载机车。该机车车体采用整体承载式结构,与当前通用的内燃机车车体(如东风8B 机车车体)相比,该机车车体中部承受的柴油机、电机等部件的重量增加了许多,且底架两端旁承组中心距拉大。作为机车的主要承载结构,车体钢结构的优化设计是该机车研制工作中的主要任务,车体钢结构必须在满足车体强度、刚度要求下实现轻量化设计,以满足机车的轴重要求。为了指导并实现车体钢结构的优化设计,我们采用大型
有限元分析软件ANSYS,在完成前期许多类比、优化计算的基础上,再次对该机车的车体结构设计方案进行了计算、改进、优化减重分析。

2 车体结构简介

机车车体由司机室、顶盖、侧墙、底架、间壁等部分组成,是机车的主要承载结构。机车在运用时,车体结构除要承受上部设备作用的垂向载荷外,还要承受牵引力、横向力以及可能遇到的数值很大的纵向拉伸、纵向压缩等载荷,为保证车体钢结构的强度和刚度要求,车体的关键承载部位如底架的柴油机梁、旁承梁、主发梁、边梁、牵引梁、横梁,侧墙的上弦梁、立柱,司机室立柱,顶盖主要承载梁等均采用了由钢板、钢板折弯件、槽钢等焊接而成的闭口组合截面结构;车体侧墙采用了由侧墙立柱、上弦梁、交叉斜撑组成的桁框组合结构;车体底架牵引梁和底架边梁之间连有箱形牵引斜撑,以保证数值很大的牵引载荷、拉伸载荷、压缩载荷等纵向载荷有效地通过前后从板座、牵引梁、牵引斜撑传递到旁承梁和底架边梁,进而传递到整个车体;车体司机室、顶盖、侧墙、底架、间壁各部分相互焊连在一起,使车体成为整体承载式车体。在采用整体式油箱情况下,车体底架中部焊接有油箱,使车体与油箱共同承载。

3 计算模型的建立

车体的结构复杂庞大,其结构及所受载荷均不具有严格的对称性,为了准确模拟车体的结构特点并使计算结果反映车体的工作性能,建立了车体的整车模型进行计算分析,计算模型中对车体的主要承载结构、主要承载部位均作了仔细的模拟。为使车体原结构、改进结构、优化结构的计算结果具有对应性、可比性,建立模型时采用的实体建模方法、网格划分方式、网格大小疏密控制参数完全一样。为了完成车体的优化计算工作,建立计算模型时充分应用了ANSYS 软件的程序化、参数化、模块化等技术。

newmaker.com
图1 车体原结构(整体式油箱方案)计算用有限元模型

图1 为建立的原结构车体计算用有限元模型。为保证计算精度并提高计算效率,模型中用ANSYS 软件的Shell63 壳单元模拟车体的钢板结构;模型中根据车体上部设备的安装情况,将各上部设备用作用在其安装部位的Mass21 质量单元来模拟;机车的二系簧则用Combin14弹簧单元模拟,弹簧单元刚度按机车在整备状态下静挠度为10mm 考虑。计算用有限元模型中共有壳单元103098 个,质量单元8832 个,弹簧单元96 个,单元节点95181 个。根据车体钢结构的材料,计算用有限元模型中采用的材料参数为:弹性模量E=210GPa,泊桑比ν=0.3,密度ρ=7850kg/mm3,计算用有限元模型的质量为20350kg。

4 车体计算载荷、计算工况、边界条件、计算结果评定

根据机车不同的运用要求,本次分析参照TB/T2541-1995《内燃、电力机车车体静强度试验方法》、TB/T1335-1996《铁道车辆强度设计及试验鉴定规范》、GB3314《内燃机车通用技术条件》等规范和标准,确定了车体计算工况、计算结果要求。

4.1 计算工况

计算工况有:垂直静载工况;垂直动载工况;正向运行牵引工况;反向运行牵引工况;正向起动牵引工况;1960KN 纵向压缩工况;1470KN 纵向拉伸工况;整体起吊工况;一位救援吊工况;二位救援吊工况;司机室保护工况 ;模态频率计算;

4.2 计算结果评定

静强度许用应力

车体钢结构的材料,主要承载部位为Q345A,其强度指标为:屈服强度σs≥345MPa,抗拉强度σb=470~630MPa。

各工况的许用应力选取如下:

垂直静载工况:安全系数取2.5,许用应力[σ]=138MPa;
垂直动载、运行牵引等工况:安全系数取1.5,许用应力为[σ]=230MPa;
起动牵引、纵向拉伸、纵向压缩、救援吊、司机室保护等工况:安全系数均取1.0,许用应力[σ]=345MPa。

5 车体结构减重优化分析

对车体进行结构减重优化分析的目的是在满足车体结构的强度、刚度、模态频率等要求下,确定车体的最佳轻量化设计方案。此次优化分析采用了设计优化分析技术,对改进结构车体进行了减重优化分析。优化分析的结果尽可能地保证车体结构的减重要求,又体现车体结构设计的模块化特点。

5.1 设计优化方法介绍

对机车车体结构进行设计优化,目标是确定在满足车体结构的强度、刚度、模态频率要求这一条件下,车体重量为最小值时的车体结构设计参数,为车体结构减重设计提供参考和指导。

为保证车体优化计算的有效性、可行性,根据前期车体改进结构方案的分析结果及设计需要,本次优化分析选取垂直静载和1960KN 纵向压缩两种典型工况进行,确定优化方案,再对优化方案的车体进行强度、刚度、模态频率校核。

对车体结构进行设计优化时采用的参数和约束条件为:

目标函数(OBJ):选择车体结构的重量为目标函数,设计优化的目标是使车体重量取最小值,即使车体重量最轻。

状态变量(SVs):选择车体结构在计算工况下的最大应力值作为状态变量。对车体在垂直静载工况下进行设计优化,状态变量为车体结构BOTTOM 面的最大应力值SVs1,以及底架边梁中部相对于机车每端二系旁承组中心的最大挠度SVs2;对车体在1960KN 纵向压缩工况进行设计优化,状态变量为车体结构BOTTOM 面的最大应力值SVs1。

约束条件:就是设计优化中的最大应力、最大挠度不超过计算标准相应的许用值。对车体在垂直静载工况下进行设计优化,要求SVs1〈138MPa、SVs2〈6.68mm;对1960KN 纵向压缩工况的设计优化,要求SVs1〈345MPa。

 
分享到: 收藏