首页 > 技术 > Altair > > 路面噪声传递路径分析与优化

路面噪声传递路径分析与优化

作者:Simwe    来源:Altair    发布时间:2016-08-19    收藏】 【打印】  复制连接  【 】 我来说两句:(0逛逛论坛

路面噪声传递路径分析与优化

Transfer Path Analysis and Optimization of Road Noise

李朕 王亮 高亚丽 王伟东
(泛亚汽车技术中心有限公司 上海 201209)


        摘要:本文介绍了传递路径分析在路面噪声优化中的应用。借助 HyperGraph 的 NVH 分析模块, 在纯仿真的环境下应用传递路径分析,在开发更早阶段找到问题根本原因。从本文的优化结果来看, 基于纯仿真的传递路径分析周期短,优化效果好。

        关键词:汽车 NVH 路噪 传递路径 HyperGraph

       Abstract: Transfer path analysis was applied in road noise analysis. It is possible to find noise root cause in early stages of vehicle development process by using HyperGraph transfer path analysis in virtual environment. CAE based TPA is more efficient than test based TPA.
Key Words: vehicle, NVH, road noise, TPA, HyperGraph

1 介绍

       路面噪声是车辆 NVH 性能开发过程中控制的一个重要指标。它作为车内主要声源影响乘员舒适 性。按照传递路径不同,路噪可分为结构传递声与空气传递声。本文介绍传递路径法(下文简称 TPA) 在结构传递声分析与优化中的应用。

       结构传递路噪典型递路径如下。路面激励通过轮胎传递到轮心,轮心传入悬架,再通过悬架传 递到车身。其中悬架与车身界面有多条传递路径。使用 TPA 方法能识别出噪声传递的主要路径和次 要路径。随着建模、求解以及后处理的进步,基于仿真的 TPA 方法能够在早期快速准确的分析问题。

2 分析方法

       影响路噪的主要因素有轮胎、悬架形式、衬套刚度以及车身侧底盘连接点的噪声传递函数。越 软的衬套和轮胎隔振效果越好,对路噪越有利。但衬套过软会影响车辆的操控稳定性。为了不影响 操控稳定性,本文重点关注车身噪声传递函数的优化。受限于燃油经济性的限制,传递函数优化不 能以牺牲重量为代价。使用 TPA 方法识别出关键路径,能在不牺牲重量的情况下满足整车振动噪声 的要求。


        分析工况如图 1 所示,对轮心施加 0 到 200Hz 的单位激励,响应点为驾驶员人耳处声压。得到 图 2 所示的分析结果。从结果可以看出,峰值出现在 110Hz 和 130Hz。主要贡献来自于后悬架。

       单独对后悬架做 TPA 分析。后悬架为扭力梁结构,与车身有 6 个连接点,忽略扭转自由度,共 有 18 条传递路径,分别为左右拖曳臂安装点,减震器安装点和弹簧安装点。传统的 TPA 法需要分 别计算传递路径和和传递力。HyperWorks12.0 提供了一个新功能,借助 PFPATH 卡片,基于仿真 的 TPA 计算一次完成,求解器会自动将分析所需所有物理量输出到 H3D 文件中。计算完成后将分 析结果导入 NVH Utilities 中的 Transfer Path Analysis 模块,该工具会自动进行后处理。整个分析流 程大为简化。

3 分析与优化

       110Hz 的 TPA 结果如图 3 所示,贡献量最大的路径为后减震器。分别查看传递力图 4 与传递函 数图 5 可看出,传递力与传递函数在 110Hz 附近峰值重合,导致了该路径的贡献最大。


       对该路径的传递函数进行优化。通过板块贡献量分析,发现 C 柱和顶棚对该传函贡献量最大。 优化工作围绕这两个板块进行。

3.1 C 柱优化

       在白车身上进行 ERP 分析。加载点与噪声传递函数一致,选择后减震器安装点。ERP 响应面 选择 C 柱区域。分析结果如图 6 所示,从结果可以看出 C 柱在 110Hz 显示了较高的辐射声功率。对该区域加筋优化后 110Hz
辐射声功率下降了 4dB。
3.2 顶棚优化

        顶棚优化不影响造型,通过以下两个方案实现。

       a) 增加一根顶棚横梁,以提高顶棚模态

       b) 在顶棚增加阻尼垫,减小顶棚振动幅值

       以上两个优化方案实施后,减小了传递路径上的幅值。将方案放回整车模型中验证,结果以上 两个优化方案实施后,减小了传递路径上的幅值。将方案放回整车模型中验证,结果所示,方案 1 和方案 2 分别将 110Hz 声压幅值降低了 2dB,两个方案同时实施将幅值共降低了 4dB。结果表明在 TPA 方法找到关键路径。通过对该路径的优化,成功降低了整车所关注频率的噪声水平。
4 结论

       图 7 最终优化结果

        本文使用纯仿真的 TPA 方法,找到了影响路噪的关键传递路径。通过对该路径的优化将整车的 噪声水平有效降低。借助 HyperWorks 12.0 整个分析的流程得到简化,提高了分析效率。

5 参考文献

        [1] Byung Kyu Yoo, Kyoung-Jin Chang, Road Noise Reduction Using a Source Decomposition and Noise Path Analysis, SAE 2005 Noise and Vibration Conference and Exhibition, 2005-01-2502 [2] HyperGraph2D 12.0 User Guide, 2013

 
 
分享到: 收藏