首页 > 技术 > Altair > > OptiStruct在白车身焊点优化中的应用

OptiStruct在白车身焊点优化中的应用

作者:Simwe    来源:Altair    发布时间:2013-06-17    收藏】 【打印】  复制连接  【 】 我来说两句:(0逛逛论坛

OptiStruct在白车身焊点优化中的应用

罗淼    张鹏飞
泛亚汽车技术中心有限公司  上海  201201


摘 要:本文建立了以白车身结构性能为约束条件,焊点数量最少为目标的优化模型,应用HyperWorks/OptiStruct模块对某白车身焊点进行拓扑优化,得到焊点贡献量分布情况,并依此调整焊点布置。经验证表明,应用OptiStruct工具进行白车身焊点优化是可行有效的。

关键词:白车身,焊点,OptiStruct,拓扑优化

0 前言

承载式白车身结构性能是决定乘用车整车性能的重要参数,其主要的考察指标是白车身刚度及模态。白车身的结构性能不仅影响着振动噪声、整车耐撞及疲劳耐久等性能,同时对车辆操控性等驾驶体验也有重要的影响[1]。通常,白车身是通过焊点连接许多薄壁结构的钣金件组成。较多的焊点对结构刚度及强度有益,但增加了焊接能耗、时间等生产成本。故在保持整车性能的基础上,优化焊点位置、减少焊点数量对降低企业成本及提高生产效率有较大的意义。本文主要研究白车身焊点对其结构性能的影响,得到各个焊点的灵敏度,通过调整焊点分布,以达到满足白车身结构性能的基础上减少焊点数量的目的。

1优化模型的建立

白车身主要分为前舱、中地板、后地板、侧围及顶盖等,其均为薄板冲压件,使用HyperMesh将板件进行网格划分为四边形及少量三角形壳单元,各板件之间采用Area Contact Method(ACM)焊点进行连接。两层焊接的ACM焊点由一个六面体单元和八个RBE3单元组成,如图1所示。以某白车身为例,划分网格、建立焊接后模型如图2所示,


其中,壳单元共有465000个,焊点共有3874个,以三层焊包含两个六面体单元计算,六面体单元共有4970个。

2优化过程

通常对大型优化模型,Optistruct的拓扑优化过程采用变密度法。该方法假设材料的弹性模量与材料的密度为确定的数学关系,且每个设计单元的密度为一个优化变量[2]。当优化结果表示设计单元的密度接近0,表示该单元弹性模量接近0,即该单元对考察的优化工况没有贡献,该单元应剔除;若密度越接近1,表示该单元的贡献量越大,该单元需要优先保留。

2.1优化空间

为了找到设计冗余或对性能影响小的焊点,应最大化地包含设计空间中所有可更改的焊点。本文将所有焊点的六面体单元作为设计单元。需注意的是,由于真实的一个三层焊点焊点在模型中表现为两个六面体单元,故三层焊点的去留需综合考察两个设计单元的优化结果。

2.2 优化工况

承载式白车身是整车综合性能的重要载体,优化中需要充分考虑结构刚度、疲劳、模态性能及结构耐撞性等因素的要求[1]。然而结构耐撞性指标属于结构非线性大变形工况,目前较难在拓扑优化中考察;疲劳分为钣金疲劳及焊点疲劳,两者不仅与应力水平有关,还与周边结构以及材料相关,故难以用单个指标描述。因此,本文在优化过程中只考察模态及刚度等指标,其他性能可做验证评估。

2.3 优化目标

拓扑优化结果是得到设计单元的密度分布,ACM焊点包含六面体单元,可以通过判断该六面体单元的密度情况决定焊点的取舍。本文优化是减少焊点的数量,即焊点的总重量最少,因而定义所有焊点六面体单元的总质量最小为优化目标[3]。

2.4 优化约束

优化约束是在优化过程中必须满足的条件。为了保持白车身的性能,及满足子系统在白车身的连接要求,故需要约束白车身的整车模态,以及和整体结构有关的刚度。权衡计算速度,本文选取白车身第一阶弯曲模态及第一阶扭转模态、白车身弯曲及扭转刚度、底盘和仪表板骨架连接点刚度作为优化约束,要求各优化约束指标均不低于原设计性能。

3优化结果处理

采用OptiStruct进行拓扑优化,经过若干步迭代后,得到焊点优化结果。取优化迭代最后一步的结果,查看其优化的响应,均满足设定的优化约束。设计单元密度分布百分比如表1所示。

 
分享到: 收藏