首页 > 技术 > CAE其它 > > 通过虚拟现实对装甲越野车辆进行仿真和测试

通过虚拟现实对装甲越野车辆进行仿真和测试

作者:Simwe    来源:Andreas Abel    发布时间:2013-01-10    收藏】 【打印】  复制连接  【 】 我来说两句:(0逛逛论坛

 

newmaker.com
图3:系统示意图

测试系统的ECU与模型相互作用

在本项目中,我们利用SimulationX对所有与车辆控制器交互的物理元件进行了建模,主要包括以下几个方面:

发动机

带扭矩变换器的减速箱和两级可换档变速箱
传动系统,配备可锁定和自解锁差速器、四轮驱动,在连接ABS和转向传感器的情况下转弯时所用的车轮调速转向模型
制动和ABS系统
轮胎压力监控系统

确保实时性能

与专为实时能力设计的预配置黑盒子解决方案相比,为具体任务定制或者从其他实时模型得出的物理模型一般不能执行实时任务。它们的实时性能由建模人员在开发模型时保证。

模型的实时能力通过两种主要机制实现。一方面,采用独一无二的、彻底符号式的预处理。在代码生成期间,SimulationX对整个系统模型的物理和数学方程式进行自动预处理。通过解答并代入方程式,简化在一次计算中多次出现的表达式,以及完全除去不影响指定接口信号的数量的计算(例如内部结果变量),来简化系统。所有这些都不需要用户参与;通过与其他代码优化措施配合,可获得非常高效的实时代码。另一方面,若干分析方法例如固有频率和振动模式,以及能源分布和性能分析等,在模型-性能优化过程中为用户提供辅助,从而满足所有计算时间要求。

一般来说,为此项目开发的SimulationX模型具有卓越的性能。例如,在一个处理器核上,即使模型实现了相对较高的采样速率,整个传动系统模型也只需要20%的计算能力。
 

newmaker.com
图4:系统数据交换

传动系统模型范例

传动系统中的组件模型按照相关ECU的I/O要求,以不同的细节程度实现。从发动机的角度,基于地图的模型足以精确地描述发动机的行为。然而,喷油系统执行器要求提供从控制输入到位置传感器以及参数化的精确设备建模。

在本项目中,我们用实际喷油控制系统验证了此模型部分。对齿轮箱和扭矩变换器进行了物理建模,其中包含离合器和制动器模型,这些模型摩擦特性实现参数化。这使得齿轮更换,和换档期间的过渡行为,例如速度梯度和齿轮更换时间等建模都成为可能。这个步骤很有意义,因为凭借不同的制动器和离合器扭矩,齿轮箱执行器不仅可以以开/关方式,而且以中间步骤方式运行。,剩余传动系统模型包括了传动轴的弹性,因此它可以进行典型的传动系统振动。根据转向角度不同,每个车轮的曲线半径均不同,因此在转弯期间,传感器能够探测到各个车轮速度。

除了控制器输出信号之外,传动系统模型还处理制动系统模型所提供的制动扭矩,并将其运用到车轮上。传动系统的速度传感器输出为各个ECU提供支持,但由于它们的信号频率过高,很难由实时模型生成,而改由FPGA产生。模型只能提供通过传感器的轮齿的脉冲频率

所示模型在实时系统的一个处理器内核上运行,周期为0.1 ms。因此,模型所占的处理器内核计算资源不到20%。

newmaker.com
图5:实时传动系统模型

传动系统模型范例

传动系统中的组件模型按照相关ECU的I/O要求,以不同的细节程度实现。从发动机的角度,基于地图的模型足以精确地描述发动机的行为。然而,喷油系统执行器要求提供从控制输入到位置传感器以及参数化的精确设备建模。

在本项目中,我们用实际喷油控制系统验证了此模型部分。对齿轮箱和扭矩变换器进行了物理建模,其中包含离合器和制动器模型,这些模型摩擦特性实现参数化。这使得齿轮更换,和换档期间的过渡行为,例如速度梯度和齿轮更换时间等建模都成为可能。这个步骤很有意义,因为凭借不同的制动器和离合器扭矩,齿轮箱执行器不仅可以以开/关方式,而且以中间步骤方式运行。,剩余传动系统模型包括了传动轴的弹性,因此它可以进行典型的传动系统振动。根据转向角度不同,每个车轮的曲线半径均不同,因此在转弯期间,传感器能够探测到各个车轮速度。

除了控制器输出信号之外,传动系统模型还处理制动系统模型所提供的制动扭矩,并将其运用到车轮上。传动系统的速度传感器输出为各个ECU提供支持,但由于它们的信号频率过高,很难由实时模型生成,而改由FPGA产生。模型只能提供通过传感器的轮齿的脉冲频率

所示模型在实时系统的一个处理器内核上运行,周期为0.1 ms。因此,模型所占的处理器内核计算资源不到20%。

 
分享到: 收藏